找回密码
 -注册-
查看: 85383|回复: 404
打印 上一主题 下一主题

实践证明,USB线对声音影响很大

[复制链接]
1
发表于 2020-9-22 14:25 | 显示全部楼层 来自 澳大利亚
本帖最后由 音乐之贼 于 2020-9-22 18:18 编辑
任任任 发表于 2020-9-21 18:59
我起码知道我自己不是,且我身边的普通人也能听出我手上的usb线的区别。靠谱的商家的话比普通人可信得多 ...

有一些傻缺2货自己的HIFI系统都是大好几万甚至接近10万人民币,然后用一根10多块钱的USB线,并且不停反驳你回复说用发烧USB线是被驴踢了。


其实大家都知道这2货真的被驴踢了。



回复

使用道具 举报

2
发表于 2020-10-5 16:03 | 显示全部楼层 来自 澳大利亚
agnostic 发表于 2020-10-5 15:18
你肯定不知道流体力学伯努利经验公式到底是说什么。这个是大学工科与流体有关专业必学的内容。

你既不 ...

我亲手剪开过3根所谓合格的USB2.0打印机线(用作PC--DAC解码数据线),其中一根绿联,一根山泽带双磁环,一根我买10000多MEIER CORDA SYMPHONY赠送的30美金的USB线。

这3根线通病,1:用的是细微的AWG26-30的铜镀锡线芯  2:线芯没有双绞  3:数据线和电源线没有分开单独屏蔽,只有一层总屏蔽。4:这种USB线芯阻抗肯定不是标准的90欧

而我自己后来升级的古河铜镀银USB线,是标准的90欧AWG22数据线AWG18电源线独立铝箔屏蔽双绞,再外加总铝箔和镀银无氧铜网一共3层独立屏蔽USB线。淘宝很多所谓的发烧DIY  USB线做不到双重屏蔽,阻抗也不是标准90欧,这样的线就是垃圾线。

当拷贝传输数据时候,因为有纠错,一般机线和DIY垃圾线问题还不大,只是时间会稍微长一点,但用作PC-USB解码器实时传输数据线,就会有潜在的问题,阻抗不合格,屏蔽不到位都会造成传输数据错误,超出标准的 BIT ERREO RATE.


对于DIY垃圾线和单独屏蔽的所谓合格USB线,请不要用在PC-DAC上。至少买一根2-3层屏蔽阻抗标准90欧的USB线。

回复

使用道具 举报

3
发表于 2020-10-6 00:05 | 显示全部楼层 来自 澳大利亚
Libertea 发表于 2020-10-5 23:52
所以符合工业标准的线没问题,不能拿基本标准达不到的垃圾线做参照系吧。

我剪开的3条线都符合工业标准,但是作为USB音频线还是差了点。请问你剪过几条线,对比过多少价位的USB线?

系统搭配能不能试听出USB线的细微差异?
回复

使用道具 举报

4
发表于 2020-10-6 13:42 | 显示全部楼层 来自 澳大利亚
jjy158158 发表于 2020-10-5 19:08
那不传输5v的呢,就用3根线是不是一样的呢,屏蔽层都是总的话。屏蔽层不用试不行的,有干扰的

如果数电分开当然更好,但即便是只用到D+和D-信号线,最好还是至少2层屏蔽,90欧(+-15%)阻抗。


我现在用的120美金古河单晶铜镀银USB线,也再找合适的基线,想自己DIY一根数电分开的USB线。  

看中的数字线基是SOMMER CABLE AQUA MIKRO 25黑水 AES发烧 音频线 数字信号线(75/110欧),2层屏蔽(2层螺旋铜网+3层保护带),电源线基用2层屏蔽 SOMMER CABLE Galileo 238(38欧)或者SOMMER CABLE Source MKII 2芯 信号线(78欧)
.


--------------------------------------------------------------------------------------------------------------------------------------------------
238和sourse也是优秀的入门模拟音频信号线。用作XLR或者RCA都不错。当然黑水和蓝水,太阳神做音频线外界评价更好。
回复

使用道具 举报

5
发表于 2020-10-6 15:30 | 显示全部楼层 来自 澳大利亚
jjy158158 发表于 2020-10-6 14:53
谢谢啊,我试了看看。

如果是PCHIFI用USB给DAC解码,PC里面最好用独立PCIE-USB转接卡,便宜的贵的看自己经济能力而定,ORICO,BUFFALO,MATRIX矩阵卡都可以。
回复

使用道具 举报

6
发表于 2020-10-6 16:50 | 显示全部楼层 来自 澳大利亚
jjy158158 发表于 2020-10-6 16:05
我以前试过,并没有觉得好啊,这个是什么原理,可以认为是加usb扩展卡会改善音质的呢。

如果用板载USB口,从CPU处理数据到PCIE总线再转USB桥接芯片再到主板USB端口,从USB桥接芯片到主板后面端口的物理距离冗长,中间引入干扰的机会大增,而且板载USB端口5V供电也差,加上很多人还用USB无线网卡,串扰跟大。

独立供电的PCIE-USB转接卡,首先5V供电就比板载好,数据信号直接从桥接芯片出来,物理距离短,相对干扰就少。另外,如果用了PCIE-USB转接卡,不要用PCI或者PCIE无线网卡,避免串扰。更好的方案是数电分离,PCIE-USB转接卡取数字信号,用线性电源5V供电。
回复

使用道具 举报

7
发表于 2020-10-6 18:48 | 显示全部楼层 来自 澳大利亚
agnostic 发表于 2020-10-6 16:54
我很好奇你是怎么测试出USB阻抗的。这不是拿个万用表就能测出来的。制作一根符合标准的USB线是很容易的事 ...

像FURUTECH,OYAIDE,SOMMER,WIREWORLD等等之类的大厂,不管是HIFI发烧线还是工作专业线,厂家都是严谨认真的,公开的数据都是真实可信的。千万不要拿淘宝某些吹上天的妖艳货色来比。
回复

使用道具 举报

8
发表于 2020-10-6 18:52 | 显示全部楼层 来自 澳大利亚
jjy158158 发表于 2020-10-6 17:09
可能我是全线电供电的关系,影响不是很大吧。我也没有无线网卡的,主板还算可以的,华硕z87军工板,按你 ...

我2台机器一个用的是华硕的H87主板,另一个是X79服务器主板。
USB线数电分开用高质量的线电独立供电肯定好。




回复

使用道具 举报

9
发表于 2020-10-6 23:39 | 显示全部楼层 来自 澳大利亚
本帖最后由 音乐之贼 于 2020-10-6 23:41 编辑
agnostic 发表于 2020-10-6 22:35
我就说绿联十几块钱的打印机线,你怎么测出来不符合USB标准了?

你测出符合标准了? 你喜欢用机线没人拦着你。


几条线我都剪开看了,都和你说了,用的AWG30的信号线,铜镀锡,这种线标准阻抗大概超过150欧以上,FURUTECH古河,OYAIDE欧亚德用的是AWG22-18做信号线阻抗才到标准90欧+-15%。我不会相信绿联有这个技术能力,用AWG30的铜镀锡线做到阻抗90欧+-15%。

SOMMER也有这样的细线,阻抗150欧以上,厂家标的清清楚楚。

你有空和我辩论,希望你也有空去SOMMER的英文官网去查查数据。





回复

使用道具 举报

10
发表于 2020-10-7 00:25 | 显示全部楼层 来自 澳大利亚
jjy158158 发表于 2020-10-7 00:04
那就代价不菲了哦,这个就是看情况了,可能别的地方也要花钱了,不知道哪里比较合适了哦,这个就是性价比 ...

没有必要,JACT卡确实不错,但和矩阵ELEMENT H是一个水平段,矩阵卡才1000多,JACT卡要4000,虽然不是智商税,但性价比太低。

把钱省下来上一张BUFFALO或者ORICO卡,上一条合格的数电分开的USB线,上一个线性电源,剩下的加钱升级下原有解码器更好。
回复

使用道具 举报

11
发表于 2020-10-7 19:35 | 显示全部楼层 来自 澳大利亚
agnostic 发表于 2020-10-7 18:45
我只是好奇啊。不要回避问题吗?难道你真是用万用表测的???


https://shop.sommercable.com/en/Cable/Bulk-Cable-Audio/
这是SOMMER官网

https://shop.sommercable.com/en/Cable/Bulk-Cable-Audio/Mikrofonkabel-SC-Primus-200-0151.html#tab_tender

这是其中随意一条线Primus的数据

我想你应该有能力看懂英文官网数据。

https://www.lulian.cn/product/701-cn.html  绿联官网

可以用SOMMER去对比绿联山泽之类的USB数据线,没有对比就没有伤害。SOMMER数据清清楚楚,绿联数据在哪? 合格的USB线阻抗90欧+-15%,我可以看数据选择SOMMER,绿联的数据呢?那看出它合格了?
回复

使用道具 举报

12
发表于 2020-10-8 01:19 | 显示全部楼层 来自 澳大利亚
agnostic 发表于 2020-10-8 01:05
你还是没能回答你是怎么测阻抗的啊???什么设备怎么测的呢???

Sommer链接里哪有90欧姆了?

你的大脑理解能力真的有问题,SOMMER那么多线,里面有标准75/110欧---90欧+-15%的,也有恰好95欧左右的,也有35欧的,也有120欧的,网站都发给你了,自己找阻抗合适的90欧+-15%做USB数据线都不会?有些线35欧,有些50欧,用来做模拟音频线更合适。

你要是觉得绿联阻抗是标准90欧+-15%,请把数据来源公示给大家。

我SOMMER的线材数据来源已经公示给你了。

不敢公布数据的线材就是垃圾一堆,你喜欢用没人拦着你。
回复

使用道具 举报

13
发表于 2020-10-8 03:01 | 显示全部楼层 来自 澳大利亚
本帖最后由 音乐之贼 于 2020-10-8 03:35 编辑
agnostic 发表于 2020-10-8 01:26
我的问题很简单,你是怎么测试的?这个对任何人类的理解力都不存在挑战吧?我就看了你贴的那个,请问哪条 ...

你有什么技术能力去测试标准90欧+-15%?


展现给大家看看。贴图视频都可以。其实问题很简单。

1:要么你能够给大家展示你的测量技术让人相信 2:如果测量没设备有难处,请你给出厂家正规数据来源。


你不能一不测量或者二不给数据来源就在这胡搅蛮缠把。


-----------------------------------------------------------------------

当我测量遇到短板时候,我相信SOMMER,FURUTECH这样的专业大厂生产的线基,数据清清楚楚。毕竟工作在10MHZ的阻抗没有设备测不了。


绿联之流什么时候把数据说清楚了?


你一直回避说明不同线材的数据来源对比,请你好好研究下不同大厂的数据线DATASHEET,看看人家有没有说谎,再看看绿联之流的数据呢?

https://www.vhaudio.com/furutech-gt2-usb-cable.pdf


这是古河GT2的数据单PDF,你自己研究下。 然后请你找出绿联类似的数据单PDF给我看看。


回复

使用道具 举报

14
发表于 2020-10-8 15:18 | 显示全部楼层 来自 澳大利亚
本帖最后由 音乐之贼 于 2020-10-8 15:20 编辑
agnostic 发表于 2020-10-8 13:28
按照你的回复和反复回避,可以推断其实你根本不懂USB标准里所谓的90欧姆是什么定义,自然也根本不懂如何 ...

你但凡上点心,就会去研究下什么是标准典型阻抗了,要么就自己有设备有能力测量10MHZ下的阻抗值,要么就能给出厂家正规数据,也就不会和我胡搅蛮缠了
麻烦你后面回复上点干货行么?要么给出技术建议要么给出真实数据。

Characteristic impedance
From Wikipedia, the free encyclopedia
Jump to navigationJump to search
This article is about impedance in electrical circuits. For impedance of electromagnetic waves, see Wave impedance. For characteristic acoustic impedance, see Acoustic impedance.

A transmission line drawn as two black wires. At a distance x into the line, there is current phasor I(x) traveling through each wire, and there is a voltage difference phasor V(x) between the wires (bottom voltage minus top voltage). If {\displaystyle Z_{0}}Z_{0} is the characteristic impedance of the line, then {\displaystyle V(x)/I(x)=Z_{0}}V(x)/I(x)=Z_{0} for a wave moving rightward, or {\displaystyle V(x)/I(x)=-Z_{0}}V(x)/I(x)=-Z_{0} for a wave moving leftward.

Schematic representation of a circuit where a source is coupled to a load with a transmission line having characteristic impedance {\displaystyle Z_{0}}Z_{0}.
The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively, and equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

The characteristic impedance of a lossless transmission line is purely real, with no reactive component. Energy supplied by a source at one end of such a line is transmitted through the line without being dissipated in the line itself. A transmission line of finite length (lossless or lossy) that is terminated at one end with an impedance equal to the characteristic impedance appears to the source like an infinitely long transmission line and produces no reflections.


Contents
1        Transmission line model
2        Derivation
2.1        Using telegrapher's equation
2.2        Alternative approach
3        Lossless line
4        Surge impedance loading
5        Practical examples
6        See also
7        References
7.1        Sources
8        External links
Transmission line model
The characteristic impedance {\displaystyle Z(\omega )}{\displaystyle Z(\omega )} of an infinite transmission line at a given angular frequency {\displaystyle \omega }\omega  is the ratio of the voltage and current of a pure sinusoidal wave of the same frequency travelling along the line. This definition extends to DC by letting {\displaystyle \omega }\omega  tend to 0, and subsists for finite transmission lines until the wave reaches the end of the line. In this case, there will be in general a reflected wave which travels back along the line in the opposite direction. When this wave reaches the source, it adds to the transmitted wave and the ratio of the voltage and current at the input to the line will no longer be the characteristic impedance. This new ratio is called the input impedance.

The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. It can be shown that an equivalent definition is: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because there is no reflection on a line terminated in its own characteristic impedance.


Schematic of Heaviside's model of an infinitesimal segment of transmission line.
Applying the transmission line model based on the telegrapher's equations as derived below,[1][2] the general expression for the characteristic impedance of a transmission line is:

{\displaystyle Z_{\text{o}}={\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}}{\displaystyle Z_{\text{o}}={\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}}
where

{\displaystyle R}R is the resistance per unit length, considering the two conductors to be in series,
{\displaystyle L}L is the inductance per unit length,
{\displaystyle G}G is the conductance of the dielectric per unit length,
{\displaystyle C}C is the capacitance per unit length,
{\displaystyle j}j is the imaginary unit, and
{\displaystyle \omega }\omega  is the angular frequency.
A surge of energy on a finite transmission line will see an impedance of {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}} prior to any reflections returning; hence surge impedance is an alternative name for characteristic impedance. Although an infinite line is assumed, since all quantities are per unit length, the “per length” parts of all the units cancel, and the characteristic impedance is independent of the length of the transmission line.

The voltage and current phasors on the line are related by the characteristic impedance as:

{\displaystyle {\frac {V_{(+)}}{I_{(+)}}}=Z_{\text{o}}=-{\frac {V_{(-)}}{I_{(-)}}}}{\displaystyle {\frac {V_{(+)}}{I_{(+)}}}=Z_{\text{o}}=-{\frac {V_{(-)}}{I_{(-)}}}}
where the subscripts (+) and (−) mark the separate constants for the waves traveling forward (+) and backward (−).

Derivation
Using telegrapher's equation

Consider one section of the transmission line for the derivation of the characteristic impedance. The voltage on the left would be V and on the right side would be V + dV . This figure is to be used for both the derivation methods.
The differential equations describing the dependence of the voltage and current on time and space are linear, so that a linear combination of solutions is again a solution. This means that we can consider solutions with a time dependence {\displaystyle e^{j\omega t}}e^{j\omega t} – doing so is functionally equivalent of solving for the Fourier coefficients for voltage and current amplitudes at some fixed angular frequency {\displaystyle \omega }\omega . Doing so causes the time dependence to factor out, leaving an ordinary differential equation for the coefficients, which will be phasors, dependent on position (space) only. Moreover, the parameters can be generalized to be frequency-dependent.[1]

Let

{\displaystyle V(x,t)\equiv V(x)\ e^{+j\omega t}}{\displaystyle V(x,t)\equiv V(x)\ e^{+j\omega t}}
and

{\displaystyle I(x,t)\equiv I(x)\ e^{+j\omega t}}{\displaystyle I(x,t)\equiv I(x)\ e^{+j\omega t}}
Take the positive direction for {\displaystyle V}V and {\displaystyle I}I in the loop to be clockwise.

We find that

{\displaystyle {\text{d}}V=-(R+j\omega L)\ I\ dx=-Z\ I\ {\text{d}}x}{\displaystyle {\text{d}}V=-(R+j\omega L)\ I\ dx=-Z\ I\ {\text{d}}x}
and

{\displaystyle {\text{d}}I=-(G+j\omega C)\ V\ {\text{d}}x=-Y\ V\ {\text{d}}x}{\displaystyle {\text{d}}I=-(G+j\omega C)\ V\ {\text{d}}x=-Y\ V\ {\text{d}}x}
or

{\displaystyle {\frac {{\text{d}}V}{{\text{d}}x}}=-Z\ I\qquad }{\displaystyle {\frac {{\text{d}}V}{{\text{d}}x}}=-Z\ I\qquad } and {\displaystyle \qquad {\frac {{\text{d}}I}{{\text{d}}x}}=-Y\ V}{\displaystyle \qquad {\frac {{\text{d}}I}{{\text{d}}x}}=-Y\ V}
where

{\displaystyle Z\equiv R+j\omega L\qquad }{\displaystyle Z\equiv R+j\omega L\qquad } and {\displaystyle \qquad Y\equiv G+j\omega C\ }{\displaystyle \qquad Y\equiv G+j\omega C\ }.
These two first-order equations are easily uncoupled by a second differentiation, with the results:

{\displaystyle {\frac {{\text{d}}^{2}V}{{\text{d}}x^{2}}}=ZY\ V}{\displaystyle {\frac {{\text{d}}^{2}V}{{\text{d}}x^{2}}}=ZY\ V}
and

{\displaystyle {\frac {{\text{d}}^{2}I}{{\text{d}}x^{2}}}=ZY\ I}{\displaystyle {\frac {{\text{d}}^{2}I}{{\text{d}}x^{2}}}=ZY\ I}
Notice that both {\displaystyle V}V and {\displaystyle I}I satisfy the same equation.

Since {\displaystyle ZY}{\displaystyle ZY} is independent of {\displaystyle x}x and {\displaystyle t}t, it can be represented by a single constant {\displaystyle -k^{2}}-k^{2}. That is:

{\displaystyle -k^{2}\equiv Z\ Y\ }{\displaystyle -k^{2}\equiv Z\ Y\ }
so

{\displaystyle j\ k=\pm {\sqrt {Z\ Y\ }}}{\displaystyle j\ k=\pm {\sqrt {Z\ Y\ }}}
The minus sign is included for later convenience. Because of it, we can write the above equation as

{\displaystyle k=\pm \omega {\sqrt {\left(L-jR/\omega \right)\left(C-jG/\omega \right)\ }}=\pm \omega {\sqrt {L\ C\ }}{\sqrt {\left(1-j{\frac {R}{\omega L}}\right)\left(1-j{\frac {G}{\omega C}}\right)\ }}}{\displaystyle k=\pm \omega {\sqrt {\left(L-jR/\omega \right)\left(C-jG/\omega \right)\ }}=\pm \omega {\sqrt {L\ C\ }}{\sqrt {\left(1-j{\frac {R}{\omega L}}\right)\left(1-j{\frac {G}{\omega C}}\right)\ }}}
which is correct for all transmission lines. And for typical transmission lines, that are built to make wire resistance loss {\displaystyle R}R small and insulation leakage conductance {\displaystyle G}G low, and further, with high frequencies, the inductive reactance {\displaystyle \omega L}{\displaystyle \omega L} and the capacitive admittance {\displaystyle \omega C}{\displaystyle \omega C} will both be large, so the constant {\displaystyle k}k is very close to being a real number:

{\displaystyle k\approx \pm \omega {\sqrt {LC\ }}.}{\displaystyle k\approx \pm \omega {\sqrt {LC\ }}.}
Further, with this definition of {\displaystyle k}k the position- or {\displaystyle x}x-dependent part will appear as {\displaystyle \ \pm j\ k\ x\ }{\displaystyle \ \pm j\ k\ x\ } in the exponential solutions of the equation, similar to the time-dependent part {\displaystyle \ +j\ \omega \ t\ }{\displaystyle \ +j\ \omega \ t\ }, so the solution reads

{\displaystyle V(x)=v_{(+)}\ e^{-jkx}+v_{(-)}e^{+jkx}}{\displaystyle V(x)=v_{(+)}\ e^{-jkx}+v_{(-)}e^{+jkx}}
where {\displaystyle v_{(+)}}{\displaystyle v_{(+)}} and {\displaystyle v_{(-)}}{\displaystyle v_{(-)}} are the constants of integration for the forward moving (+) and backward moving (−) waves, as in the prior section. When we recombine the time-dependent part we obtain the full solution:

{\displaystyle V(x,t)\quad =\quad V(x)\ e^{+j\omega t}\quad =\quad v_{(+)}\ e^{-jkx+j\omega t}+v_{(-)}e^{+jkx+j\omega t}}{\displaystyle V(x,t)\quad =\quad V(x)\ e^{+j\omega t}\quad =\quad v_{(+)}\ e^{-jkx+j\omega t}+v_{(-)}e^{+jkx+j\omega t}}
Since the equation for {\displaystyle I}I is the same form, it has a solution of the same form:

{\displaystyle I(x)=i_{(+)}\ e^{-jkx}+i_{(-)}\ e^{+jkx}}{\displaystyle I(x)=i_{(+)}\ e^{-jkx}+i_{(-)}\ e^{+jkx}}
where {\displaystyle i_{(+)}}{\displaystyle i_{(+)}} and {\displaystyle i_{(-)}}{\displaystyle i_{(-)}} are again constants of integration.

The above equations are the wave solution for {\displaystyle V}V and {\displaystyle I}I. In order to be compatible, they must still satisfy the original differential equations, one of which is

{\displaystyle {\frac {{\text{d}}V}{{\text{d}}x}}=-Z\ I}{\displaystyle {\frac {{\text{d}}V}{{\text{d}}x}}=-Z\ I}
Substituting the solutions for {\displaystyle V}V and {\displaystyle I}I into the above equation, we get

{\displaystyle {\frac {\text{d}}{{\text{d}}x}}\left[v_{(+)}\ e^{-jkx}+v_{(-)}\ e^{+jkx}\right]=-(R+j\omega L)\left[\ i_{(+)}\ e^{-jkx}+i_{(-)}\ e^{+jkx}\right]}{\displaystyle {\frac {\text{d}}{{\text{d}}x}}\left[v_{(+)}\ e^{-jkx}+v_{(-)}\ e^{+jkx}\right]=-(R+j\omega L)\left[\ i_{(+)}\ e^{-jkx}+i_{(-)}\ e^{+jkx}\right]}
or

{\displaystyle -jk\ v_{(+)}\ e^{-jkx}+jk\ v_{(-)}\ e^{+jkx}=-(R+j\omega L)\ i_{(+)}\ e^{-jkx}-(R+j\omega L)\ i_{(-)}\ e^{+jkx}}{\displaystyle -jk\ v_{(+)}\ e^{-jkx}+jk\ v_{(-)}\ e^{+jkx}=-(R+j\omega L)\ i_{(+)}\ e^{-jkx}-(R+j\omega L)\ i_{(-)}\ e^{+jkx}}
Isolating distinct powers of {\displaystyle e}e and combining identical powers, we see that in order for the above equation to hold for all possible values of {\displaystyle x}x we must have:

For the co-efficients of {\displaystyle e^{-jkx}\quad {\text{ : }}\quad -j\ k\ v_{(+)}=-(R+j\omega L)\ i_{(+)}}{\displaystyle e^{-jkx}\quad {\text{ : }}\quad -j\ k\ v_{(+)}=-(R+j\omega L)\ i_{(+)}}
For the co-efficients of {\displaystyle e^{+jkx}\quad {\text{ : }}\quad +j\ k\ v_{(-)}=-(R+j\omega L)\ i_{(-)}}{\displaystyle e^{+jkx}\quad {\text{ : }}\quad +j\ k\ v_{(-)}=-(R+j\omega L)\ i_{(-)}}
Since {\displaystyle jk={\sqrt {(R+j\omega L)(G+j\omega C)\ }}}{\displaystyle jk={\sqrt {(R+j\omega L)(G+j\omega C)\ }}}

{\displaystyle +{\frac {v_{(+)}}{i_{(+)}}}={\frac {R+j\omega L}{jk}}={\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}\equiv Z_{\text{o}}}{\displaystyle +{\frac {v_{(+)}}{i_{(+)}}}={\frac {R+j\omega L}{jk}}={\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}\equiv Z_{\text{o}}}
{\displaystyle -{\frac {v_{(-)}}{i_{(-)}}}={\frac {R+j\omega L}{jk}}={\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}\equiv Z_{\text{o}}}{\displaystyle -{\frac {v_{(-)}}{i_{(-)}}}={\frac {R+j\omega L}{jk}}={\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}\equiv Z_{\text{o}}}
hence, for valid solutions require

{\displaystyle v_{(+)}=+Z_{\text{o}}\ i_{(+)}\quad {\text{ and }}\quad v_{(-)}=-Z_{\text{o}}\ i_{(-)}}{\displaystyle v_{(+)}=+Z_{\text{o}}\ i_{(+)}\quad {\text{ and }}\quad v_{(-)}=-Z_{\text{o}}\ i_{(-)}}
It can be seen that the constant {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}}, defined in the above equations has the dimensions of impedance (ratio of voltage to current) and is a function of primary constants of the line and operating frequency. It is called the “characteristic impedance” of the transmission line, and conventionally denoted by {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}}.[2]

{\displaystyle Z_{\text{o}}\quad =\quad {\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}\quad =\quad {\sqrt {\ {\frac {\ L\ }{C}}\ }}{\sqrt {{\frac {\ 1-j\left({\frac {R}{\omega L}}\right)\ }{\ 1-j\left({\frac {G}{\omega C}}\right)\ }}\ }}}{\displaystyle Z_{\text{o}}\quad =\quad {\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}\quad =\quad {\sqrt {\ {\frac {\ L\ }{C}}\ }}{\sqrt {{\frac {\ 1-j\left({\frac {R}{\omega L}}\right)\ }{\ 1-j\left({\frac {G}{\omega C}}\right)\ }}\ }}}
for any transmission line, and for well-functioning transmission lines, with {\displaystyle R}R and {\displaystyle G}G both very small, or {\displaystyle \omega }\omega  very high, or all of the above, we get

{\displaystyle Z_{\text{o}}\approx {\sqrt {{\frac {L}{C}}\ }}}{\displaystyle Z_{\text{o}}\approx {\sqrt {{\frac {L}{C}}\ }}}
hence the characteristic impedance is typically very close to being a real number (see also the Heaviside condition.)

Alternative approach
We follow an approach posted by Tim Healy.[3] The line is modeled by a series of differential segments with differential series {\displaystyle (R{\text{d}}x,L{\text{d}}x)}{\displaystyle (R{\text{d}}x,L{\text{d}}x)} and shunt {\displaystyle (C{\text{d}}x,G{\text{d}}x)}{\displaystyle (C{\text{d}}x,G{\text{d}}x)} elements (as shown in the figure above). The characteristic impedance is defined as the ratio of the input voltage to the input current of a semi-infinite length of line. We call this impedance {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}}. That is, the impedance looking into the line on the left is {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}}. But, of course, if we go down the line one differential length {\displaystyle {\text{d}}x}{\text{d}}x, the impedance into the line is still {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}}. Hence we can say that the impedance looking into the line on the far left is equal to {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}} in parallel with {\displaystyle C{\text{d}}x}{\displaystyle C{\text{d}}x} and {\displaystyle G{\text{d}}x}{\displaystyle G{\text{d}}x}, all of which is in series with {\displaystyle R{\text{d}}x}{\displaystyle R{\text{d}}x} and {\displaystyle L{\text{d}}x}{\displaystyle L{\text{d}}x}. Hence:

{\displaystyle Z_{\text{o}}=(R+j\omega L){\text{d}}x+{\frac {1}{\ (G+j\omega C){\text{d}}x+{\frac {1}{Z_{\text{o}}}}\ }}}{\displaystyle Z_{\text{o}}=(R+j\omega L){\text{d}}x+{\frac {1}{\ (G+j\omega C){\text{d}}x+{\frac {1}{Z_{\text{o}}}}\ }}}
{\displaystyle Z_{\text{o}}=(R+j\omega L){\text{d}}x+{\frac {\ Z_{\text{o}}\ }{Z_{\text{o}}(G+j\omega C){\text{d}}x+1\ }}}{\displaystyle Z_{\text{o}}=(R+j\omega L){\text{d}}x+{\frac {\ Z_{\text{o}}\ }{Z_{\text{o}}(G+j\omega C){\text{d}}x+1\ }}}
{\displaystyle Z_{\text{o}}+Z_{\text{o}}^{2}(G+j\omega C){\text{d}}x=(R+j\omega L){\text{d}}x+Z_{\text{o}}(G+j\omega C){\text{d}}x(R+j\omega L){\text{d}}x+Z_{\text{o}}}{\displaystyle Z_{\text{o}}+Z_{\text{o}}^{2}(G+j\omega C){\text{d}}x=(R+j\omega L){\text{d}}x+Z_{\text{o}}(G+j\omega C){\text{d}}x(R+j\omega L){\text{d}}x+Z_{\text{o}}}
The {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}} terms cancel, leaving

{\displaystyle Z_{\text{o}}^{2}(G+j\omega C){\text{d}}x=(R+j\omega L){\text{d}}x+Z_{\text{o}}(G+j\omega C)(R+j\omega L)({\text{d}}x)^{2}}{\displaystyle Z_{\text{o}}^{2}(G+j\omega C){\text{d}}x=(R+j\omega L){\text{d}}x+Z_{\text{o}}(G+j\omega C)(R+j\omega L)({\text{d}}x)^{2}}
The first-power {\displaystyle {\text{d}}x}{\text{d}}x terms are the highest remaining order. In comparison to {\displaystyle {\text{d}}x}{\text{d}}x, the term with the factor {\displaystyle ({\text{d}}x)^{2}}{\displaystyle ({\text{d}}x)^{2}} may be discarded, since it is infinitesimal in comparison, leading to:

{\displaystyle Z_{\text{o}}^{2}(G+j\omega C){\text{d}}x=(R+j\omega L){\text{d}}x}{\displaystyle Z_{\text{o}}^{2}(G+j\omega C){\text{d}}x=(R+j\omega L){\text{d}}x}
and hence

{\displaystyle Z_{\text{o}}=\pm {\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}}{\displaystyle Z_{\text{o}}=\pm {\sqrt {{\frac {R+j\omega L}{G+j\omega C}}\ }}}
Reversing the sign on the square root has the effect of changing the direction of the flow of current.

Lossless line
The analysis of lossless lines provides an accurate approximation for real transmission lines that simplifies the mathematics considered in modeling transmission lines. A lossless line is defined as a transmission line that has no line resistance and no dielectric loss. This would imply that the conductors act like perfect conductors and the dielectric acts like a perfect dielectric. For a lossless line, R and G are both zero, so the equation for characteristic impedance derived above reduces to:

{\displaystyle Z_{\text{o}}={\sqrt {{\frac {L}{C}}~}}~.}{\displaystyle Z_{\text{o}}={\sqrt {{\frac {L}{C}}~}}~.}
In particular, {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}} does not depend any more upon the frequency. The above expression is wholly real, since the imaginary term j has canceled out, implying that {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}} is purely resistive. For a lossless line terminated in {\displaystyle Z_{\text{o}}}{\displaystyle Z_{\text{o}}}, there is no loss of current across the line, and so the voltage remains the same along the line. The lossless line model is a useful approximation for many practical cases, such as low-loss transmission lines and transmission lines with high frequency. For both of these cases, R and G are much smaller than ωL and ωC, respectively, and can thus be ignored.

The solutions to the long line transmission equations include incident and reflected portions of the voltage and current:

{\displaystyle V={\frac {V_{r}+I_{r}Z_{c}}{2}}e^{\gamma x}+{\frac {V_{r}-I_{r}Z_{c}}{2}}e^{-\gamma x}}{\displaystyle V={\frac {V_{r}+I_{r}Z_{c}}{2}}e^{\gamma x}+{\frac {V_{r}-I_{r}Z_{c}}{2}}e^{-\gamma x}}
{\displaystyle I={\frac {V_{r}/Z_{c}+I_{r}}{2}}e^{\gamma x}-{\frac {V_{r}/Z_{c}-I_{r}}{2}}e^{-\gamma x}}{\displaystyle I={\frac {V_{r}/Z_{c}+I_{r}}{2}}e^{\gamma x}-{\frac {V_{r}/Z_{c}-I_{r}}{2}}e^{-\gamma x}}
When the line is terminated with its characteristic impedance, the reflected portions of these equations are reduced to 0 and the solutions to the voltage and current along the transmission line are wholly incident. Without a reflection of the wave, the load that is being supplied by the line effectively blends into the line making it appear to be an infinite line. In a lossless line this implies that the voltage and current remain the same everywhere along the transmission line. Their magnitudes remain constant along the length of the line and are only rotated by a phase angle.
Surge impedance loading
In electric power transmission, the characteristic impedance of a transmission line is expressed in terms of the surge impedance loading (SIL), or natural loading, being the power loading at which reactive power is neither produced nor absorbed:

{\displaystyle {\mathit {SIL}}={\frac {{V_{\mathrm {LL} }}^{2}}{Z_{0}}}}{\mathit {SIL}}={\frac {{V_{\mathrm {LL} }}^{2}}{Z_{0}}}
in which {\displaystyle V_{\mathrm {LL} }}V_{\mathrm {LL} } is the line-to-line voltage in volts.

Loaded below its SIL, a line supplies reactive power to the system, tending to raise system voltages. Above it, the line absorbs reactive power, tending to depress the voltage. The Ferranti effect describes the voltage gain towards the remote end of a very lightly loaded (or open ended) transmission line. Underground cables normally have a very low characteristic impedance, resulting in an SIL that is typically in excess of the thermal limit of the cable. Hence a cable is almost always a source of reactive power.

Practical examples
Standard        Impedance
(Ω)        Tolerance
Ethernet Cat.5        100         ±5Ω[4]
USB         90        ±15%[5]
HDMI         95        ±15%[6]
IEEE 1394        108         +3%
−2%[7]
VGA         75         ±5%[8]
DisplayPort        100        ±20%[6]
DVI         95        ±15%[6]
PCIe         85        ±15%[6]
The characteristic impedance of coaxial cables (coax) is commonly chosen to be 50 Ω for RF and microwave applications. Coax for video applications is usually 75 Ω for its lower loss.

See also: Nominal impedance § 50 Ω and 75 Ω
See also
Ampère's circuital law
Characteristic acoustic impedance
Electrical impedance – The opposition of a circuit to a current when a voltage is applied
Maxwell's equations – Equations describing classical electromagnetism
Transmission line
Wave impedance
Space cloth – Hypothetical plane with resistivity of 376.7 ohms per square.
References
"The Telegrapher's Equation". mysite.du.edu. Retrieved 9 September 2018.
"Derivation of Characteristic Impedance of Transmission line". GATE ECE 2018. 16 April 2016. Archived from the original on 9 September 2018. Retrieved 9 September 2018.
"Characteristic Impedance". www.ee.scu.edu. Retrieved 2018-09-09.
"SuperCat OUTDOOR CAT 5e U/UTP" (PDF). Archived from the original (PDF) on 2012-03-16.
"Chapter 2 – Hardware". USB in a NutShell. Beyond Logic.org. Retrieved 2007-08-25.
"AN10798 DisplayPort PCB layout guidelines" (PDF). Retrieved 2019-12-29.
"Evaluation" (PDF). materias.fi.uba.ar. Retrieved 2019-12-29.
"VMM5FL" (PDF). pro video data sheets. Archived from the original (PDF) on 2016-04-02. Retrieved 2016-03-21.
Sources
Guile, A. E. (1977). Electrical Power Systems. ISBN 0-08-021729-X.
Pozar, D. M. (February 2004). Microwave Engineering (3rd ed.). ISBN 0-471-44878-8.
Ulaby, F. T. (2004). Fundamentals Of Applied Electromagnetics (media ed.). Prentice Hall. ISBN 0-13-185089-X.


回复

使用道具 举报

15
发表于 2020-10-8 20:31 | 显示全部楼层 来自 澳大利亚
本帖最后由 音乐之贼 于 2020-10-8 20:35 编辑
agnostic 发表于 2020-10-8 19:10
你抄一段维基百科完全就代表你明白USB阻抗是啥了?你不是号称自己亲自动手的吗?怎么让你拿个证据出来就 ...

你也就剩下嘴硬了,如果眼神不好的话,麻烦你把我说的话再去看几遍。大脑不好不要紧,眼神再不好就糟糕了。
来来,麻烦你抄点USB数据给大家看看。你不会测量难道抄也不会吗?



我在线等你 请把你认为合格标准90欧+-15%绿联USB数据线抄给大家看。快点,别墨迹。


回复

使用道具 举报

16
发表于 2020-10-9 07:24 | 显示全部楼层 来自 澳大利亚
本帖最后由 音乐之贼 于 2020-10-9 07:25 编辑
sin4423 发表于 2020-10-9 05:30
看看家电论坛里这篇帖子吧,这个帖子里有个视频链接是非常权威的。如果脑袋有坑真的应该去填填,我是指的还 ...

https://www.youraudiosolutions.com/interview-articles/ethan-winer-busting-audio-myths-and-why-dave-pensado-was-tricked  
他的文章不知道你能打开不,我这边没问题,截取他的一段话。

HIGH DEFINITION AUDIO, IS 96 KHZ BETTER THAN 48 KHZ?
No, I think this is one of the biggest scam perpetuating on everybody in audio. Not just people making music but also people who listen to music and buys it.
When this is tested properly nobody can tell the difference between 44.1 kHz and higher. People think they can hear the difference because they do an informal test. They play a recording at 96 kHz and then play a different recording from, for example, a CD. One recording sounds better than the other so they say it must be the 96 kHz one but of course, it has nothing to do with that.


他的标题是高码率音频,96KHZ比48KHZ好么,然后文章里面写的是不停说44.1采样率和CD?其实比较下48KHZ和384KHZ才更有意义。但这个作者只强调96KHZ和CD去比,呵呵了。很多解码器解码96KHZ还真不如高级CD机安定稳当。这个作者有故意设置陷阱之举。

其实日常中SACD取样比CD高,听感上的差异非常明显,SACD整体氛围,空气感细节声场细节都更好。


回复的人都看不过去了,第二个基本是爆粗口。

It just comes down to a well built piece of gear or cable. No matter cost. If an $800 interface uses good materials and is well built it will sound as clean as a $ 3000 interface. As he said with the $20 cable, wire was good and soldered well, sounds good. Resistance may be different but will perform as expected.
I have been guilty of wanting/needing to hear a difference because I spent good money. The reality was zero difference. Kinda like putting different color marker on the edge of a cd, red us brighter, black is warmer, sure it is. Lol .



You really lost my trust when you said summing mixers are pointless. Even my ditsy girlfriends jaw dropped when she heard three difference. The mix is way bigger more open louder and impactful. This article would have stopped. me from achieving the sound I have now had I read it before buying the dangerous 2 bus +





回复

使用道具 举报

17
发表于 2020-10-9 08:02 | 显示全部楼层 来自 澳大利亚
其实像SOMMER,FURUTECH这样世界闻名的业界翘楚专业线大厂,工程师对线材的研究水平远远比这个Ethan Winer要高。模拟线数字线种类繁多,应对不同场合。否则这世界之需要一种模拟线线基,几种不同阻抗数据线线基就定天下了。


可惜不光模拟线轻而易举的听出差异,电源线用心也能听出不同,唯一有争议的是数据线,真正阻抗合格的数据线的听感差异非常小,但仪器一测一个准。
回复

使用道具 举报

18
发表于 2020-10-9 20:37 | 显示全部楼层 来自 澳大利亚
agnostic 发表于 2020-10-9 17:17
你连什么仪器测都没整明白,又开始吹牛了。很多你所谓的线材厂,主要从事的业务就是设计外观和营销,基材 ...

我一共提到4个你所谓的线材厂,SOMMER,FURUTECH,OYAIDE,WIREWORLD.

请你拿出点干货数据来说明绿联的线材不比这4个世界闻名的顶尖大厂差。

  SOMMER:                    https://www.sommercable.com/en/?preferred_language=en

FURUTECH:                   http://www.furutech.com

OYAIDE:                     http://www.oyaide.com/ENGLISH/index.html

WIREWORLD:               https://www.wireworldcable.com


绿联:                    https://www.lulian.cn/product/29-cn.html

请问绿联你的数据在哪?

你质疑我说的话,谁质疑谁举证,请你给出绿联的数据来让大家看。你所谓的线材厂数据都在上面,只会啪啪啪打你的脸。




回复

使用道具 举报

19
发表于 2020-10-10 23:15 | 显示全部楼层 来自 澳大利亚
agnostic 发表于 2020-10-10 10:30
吹牛被揭破了,还嘴硬啥呢?不要说你自己的测试给不出来,你贴几个链接里又有什么数字来证明你的观点了? ...



你是不是网站打不开,也没有查过数据?但凡受过高等教育,有英语能力,头脑好使,眼睛不瞎,的都不会和3岁小孩一样要喂着吃饭,
1:SOMMER CABLE:   https://shop.sommercable.com/en/Cable/Bulk-Cable-Audio/Mikrofonkabel-SC-AQUA-MARINEX-MIKRO-200-0141AQ.html#tab_attributes

Article number200-0141AQNameSC-AQUA MARINEX MIKROEAN4049371315906BrandSommer cablePropertiesHalogen-free / LSZHPropertiesUnderwater / submergedPropertiesDigital 110 Ω AES / EBUPropertiesPURPropertiesAnalogApplication areaMobile outdoor / indoorApplication areaStage / liveApplication areaELA 100 VApplication areaInstallationApplicationMicrophone CableColourblackJacket material (AES/EBU, DMX)PUR-SRJacket Ø (AES/EBU, DMX) [mm]4,60Inner conductor (AES/EBU, DMX)2Inner conductor (AES/EBU, DMX) [mm2]0,14Shielding (AES/EBU, DMX)Copper spiral + special protective bandageShielding factor [%]95Copper strands (AES/EBU, DMX)18Copper strand Ø (AES/EBU, DMX) [mm]0,10Conductor insulation material (AES/EBU, DMX)PVCConductor insulation Ø (AES/EBU, DMX) [mm]0,00Weight per 1 m [g]30Fire load per m [kWh]0,18Packingbulk stockTemperature min. [°C]-40Temperature max. [°C]80Max. water depth [m]20Max. water pressure [bar]2Capac. cond./cond. per 1 m (AES/EBU, DMX) [pF]65Capacity wire/wire at 1 ft. (AES/EBU, DMX) [pF]19,812Capac. cond./shield. per 1 m (AES/EBU, DMX) [pF]190Capacity wire/electic screen at 1 ft. (AES/EBU, DMX) [pF]57,912Surge impedance (AES/EBU, DMX) [Ω]110Insulation resist. per 1 km (AES/EBU, DMX) [GΩ]1Insulation resist. per 1000 feet (AES/EBU, DMX) [GΩ]0,3048Conductor resistance per 1 km (AES/EBU, DMX) [Ω]141Conductor resistance per 1000 ft. (AES/EBU, DMX) [Ω]42,9768Shield. resistance per 1 km [Ω]29,1Shield. resistance per 1000 ft. [Ω]8,8697Available sinceV07.0BPVo-EuroclassFca


2: FURUTECH:  https://www.vhaudio.com/furutech-gt2-usb-cable.pdf

Electrical PropertiesPut Your Computer-Based Audio System on the Podium withPure Transmission GT2 USB CablesFURUTECH CO., LTD • service@furutech.com • www.furutech.comFURUTECH reserves the right to change product specifications without prior noticeSheath-2 Material RoHS-compliant flexible resonance-damping PVC (Black)Diameter (mm) 6.0±0.15Sleeve Material Nylon yarn braid (Blue/Black)Overall Diameter (mm) 6.4 ± 0.15Item SpecificationsMax. Conductor Resistance 28AWG:192.2 Ω/km 24AWG:98 Ω/km JIS3005 6 20℃Min. Insulation Resistance 100 MΩ/km JIS3005 9.1 20℃Dielectric Strength AC 500 V/1min JIS3005 8Characteristic Impedance 90±15%Ω at 10mHzCapacitance 20 pf / ft at 1kHzTransmission Delay Time 30±15%ns

3:OYAIDE  :    http://www.oyaide.com/ENGLISH/AUDIO/products_category/interconnects_cable/pg515.html

Conductor
1.0mm 5N(99.9995%)Pure Silver
Insulator/Filling layer
PFA/ Foamed polyethylene
Shielding
PE / Copper foil + Silver plated copper mesh
Outer sheath
UV protective polyurethane
Impedance
110 Ω
Capacitance
72.1 nF/Km
Attenuation
74.5 dB/Km
Conductor resistance
25 Ω/Km
Diameter
8.5mm
Connector
FOCUS 1
Lineup
AR-910 0.7m
AR-910 1.0m
AR-910 1.3m
Release date
2008/10/20




4:WIREWORLD:                https://www.wireworldcable.com/hi-res-digital-audio-cables.html#usb2

DESIGN
SIGNAL CONDUCTORS
CONDUCTOR MATERIAL
INSULATION
PLUG CONTACTS
NOTE

Uni-Path  –  90 Ohms

Qty: 3    Gauge: 28AWG  |  0.08 sq. mm

Solid silver

Composilex 3

24K Gold-plated with Carbon Fiber shells

P2AB (A to B plugs); P2AM (A to Micro-B)

P2CA (C to A); P2CB (C to B);




5: 绿联:https://www.lulian.cn/product/29-cn.html


很遗憾,没有数据。








回复

使用道具 举报

20
发表于 2020-10-11 03:11 | 显示全部楼层 来自 澳大利亚

你水平高,你能用万用表测出10MHZ下标准阻抗值。

你一直意淫我用万用表测量,可惜我没你那个本事用万用表测。我最起码知道万用表测不准。最起码知道去查抄官网数据。最起码知道不提供数据的所谓合格线材都是要质疑否决的。。

SOMMER 和OYAIDE的那2根线材都是标准阻抗110欧的AES数据线,接近90欧+-15%阈值,勉强可以用作USB数字线基,也可用作XLR音频线。

OYAIDE的5S  USB数字线基也调整了线径和阻抗使其更匹配90欧+-15%。

http://www.oyaide.com/ENGLISH/AUDIO/products_category/digital_cable/pg746.html

SPEC Continental 5S
Cable
Continental
Signal line :0.5mm 5N pure silver x twisted pair FEP insulation

Power line :AWG22 PCOCC-A x twisted pair FEP insulation

Copper fail sheilding (for each of signal and power lines)

100% silk fillament in filling layer

Plug
Original USB Plug
Material of contacts :RoHS compliant copper alloy

Plating on contacts :Silver + Rhodium

Cover: Brass, Chrome plating

Standard
480Mbps HI-SPEED USB2.0
Lineup /Length
0.6m
1.2m
1.8m
3.0m
※Custom cable length is not available.
Release Date
2011/10/15



给你4家大厂数据可以很鲜明的对比绿联。绿联的数据找不到。

如果你觉得大厂提供数据的线不对,不值得信任,去相信没有数据的绿联,没有人拦着你,就好比有人告诉你猪肉牛肉各项公开数据,是值得信任的食材,狗屎就不行。你说,不,你相信某个旮旯的一陀狗屎做食材和猪肉牛肉一样好。你还反驳别人,没测试过狗屎的数据,没有尝过狗屎就说不好是胡搅蛮缠,狗屎是符合食材的指标的。你很享受。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | -注册-

本版积分规则

Archiver|手机版|粤icp备09046054号|耳机网-耳机大家坛

粤公网安备 44030602000598号 耳机大家坛、www.erji.net、网站LOGO图形均为注册商标

GMT+8, 2024-5-22 01:28

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表